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Positivity of Entropy Production1

Christian Maes2, 3 and Frank Redig2, 4

Received October 29, 1999; final November 30, 1999

We discuss the positivity of the mean entropy production for stochastic systems
driven from equilibrium, as it was defined in refs. 7 and 8. Non-zero entropy
production is closely linked with violation of the detailed balance condition.
This connection is rigorously obtained for spinflip dynamics. We remark that
the positivity of entropy production depends on the choice of time-reversal
transformation, hence on the choice of the dynamical variables in the system of
interest.
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1. MOTIVATION

Boltzmann's famous formula S=log W relates the Clausius ther-
modynamic entropy S with the configurational entropy log W; W denotes
the ``thermodynamic probability'' obtained by ``counting the number of
microstates compatible with the values of a given set of macro-variables''
for a system containing a huge amount of degrees of freedom (we ignored
additive and multiplicative constants).

Going to open systems which are driven away from equilibrium by
external forces (Clausius�Duhem processes) it is often no longer clear what
are the ``natural'' macro-variables. This makes it difficult to apply the
Gibbs formalism as method of statistical inference and to understand what
nonequilibrium entropy can possibly mean.
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To start a statistical mechanics for non-equilibrium thermodynamics,
a natural first step would be to consider the currents appearing in hydro-
dynamical (continuity) equations together with their microscopic expres-
sions. These currents mostly correspond to the macroscopic variables (e.g.,
conserved quantities) one is used to work with in equilibrium. Driving the
equilibrium system means applying gradients (via reservoirs) in chemical
potential, pressure, temperature and the like. The non-equilibrium state is
in the first place a current-carrying state and vice versa. From this point of
view, the logical continuation must be to describe the open system in its
steady state on a space-time level. By their very nature, currents consist of
quantities passing a region in a given time. It is thus rather natural to
attempt a space-time description in which given values of the currents
determine the ``action functional'' governing the pathspace measure. The
word ``action-functional'' stands for the analogue of the Hamiltonian
generating the distribution of an equilibrium system but now our func-
tional will contain both spatial and temporal integration. The space-time
distribution is thus seen as a Gibbs measure in the traditional sense but
with, for equilibrium, unusual constraints or ensembles. This is the
Gibbsian hypothesis that was put forward in ref. 7 to be compared with the
Chaoticity hypothesis of Gallavotti�Cohen, see refs. 2 and 3. The true
(space-like) stationary state is then just the ``projection'' or ``restriction'' of
this space-time steady state to a hypersurface (consisting of all space-time
points which have the same time-coordinate).

Under the Gibbsian hypothesis, we now have a natural candidate for
entropy production. The crucial point about currents is that they allow to
break the time-reversal invariance that was present under equilibrium con-
ditions. The equilibrium dynamics will give rise to a space-time steady state
which is invariant under time-reversal. Imposing gradients adds however
time-reversal symmetry breaking terms to the action functional (generating
currents) and the time-reversed state is no longer equal to the original one.
For almost all spacetime configurations, the mean entropy production
(that we will define below) can be thought of as measuring the distance (in
the sense of relative entropy) between the original space-time state and the
time-reversed space-time state. The fluctuations of the entropy production
(as a random variable) around that value are negligibly small in the spatio-
temporal size of the observation window and they satisfy the same sym-
metry as in the Gallavotti�Cohen theorem, see refs. 1�3, 5, 7, 8, and 11.

In the present paper we are mostly concerned with the relation
between positivity of entropy production and detailed balance. This
relation becomes nontrivial only when dealing with systems in the ther-
modynamic limit. We prove the equivalence between zero entropy produc-
tion and detailed balance only for spinflip processes. We wish to restrict us
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here to that mathematically simplest case while it appears evident that the
proof can be extended to for example diffusive systems which physically,
for the purpose of studies of entropy production, are more interesting by
the presence of conserved quantities.

2. ENTROPY PRODUCTION

2.1. Heuristics

Suppose we have obtained by some procedure a probability distribu-
tion PJ on the (microscopic) trajectories in phase space of our system
which is consistent with the values of space-time macroscopic variables J.
This distribution PJ represents the plausibilities that we attach within a
model to certain time-series of microscopic states given certain macroscopic
information. That time-series is produced by the dynamics but our
probabilities are certainly not ``created by nature'' or by some ``truly
random or chaotic'' dynamics.

One way to construct PJ is to start from an equilibrium dynamics and
to add to the basic equations driving terms and reservoirs to generate
currents. Starting from such a non-equilibrium dynamics one constructs the
pathspace measure PJ with respect to some natural stationary measure.
Macroscopic information is here contained in the choice of the amplitude
by which the non-equilibrium condition is maintained. This amplitude may
for example consist of the value of the temperature gradient between two
reservoirs with which the system is brought into contact and in this case it
is conjugate to the heat current. Or it may be the value of an external (elec-
tric) field (measuring the gradient in chemical or electric potential at the
ends of the system) in which case it is conjugate to the particle or charge
current.

A second way to obtain PJ is physically more pragmatic. There one
starts with the choice of a reference pathspace measure P0 which is supposed
to describe the unperturbed equilibrium steady state via a time-reversal
invariant space-time action functional A0 (P0 &exp(&A0)). It could corre-
spond to a classical (or quantum) KMS state which is time-reversal
invariant, see ref. 1 for a quantum example. Macroscopic information
is contained in a choice of values for currents J and, in the spirit of the
maximum entropy principle for equilibrium states, one simply expects PJ

t

exp &[A0+E } J] as the space-time Gibbs state corresponding to the new
action AJ=A0+E } J. The product E } J is responsible for breaking time-
reversal invariance and possibly includes a sum over different types of
currents as well as a space-time integration.
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Whatever the case, we take it as part of our Gibbsian hypothesis that we
have found the distribution PJ which, for the purpose at hand, correctly
describes the plausibility of microscopic trajectories and for which it is
possible to identify an action functional AJ on space-time.

In fact, for the definition of entropy production, not all details of the dis-
tribution PJ must be taken in consideration. The main point is that we wish
to give meaning to the quantity

S4 (|)=log
PJ (|)
PJ (%|)

=AJ (%|)&AJ (|)=2E } J (2.1)

where % is the time-reversal operation on space-time trajectories |, defined
from (%|)(t)=?(|(&t)), where ? is an involution (also sometimes called,
time-reversal) on phase space, and where we used the antisymmetry of the
currents under time-reversal: J(%|)=&J(|). The relation (2.1) ``defines''
what we call the entropy production for a microscopic trajectory | when the
relative weight PJ (|)�PJ (%|) is well-defined. This last condition must allow
us to compare the plausibility of every trajectory with its time-reversed
motion. It is clear that one needs to have that PJ (%|)=0 implies PJ (|)=0.
In other words, time-reversed trajectories must remain possible trajectories
for the system (with perhaps a much smaller or a much larger plausibility) at
least for the overwhelming majority of trajectories as measured by PJ. We call
this property dynamical reversibility (as in ref. 12) but it should not be con-
fused with microscopic reversibility (which is more or less the same as
detailed balance).

Clearly, and on the same formal level, if we take the expectation of S4
over PJ, that is in the non-equilibrium steady state (NESS), then the mean
entropy production is obtained and, by concavity of the logarithmic func-
tion, it is clearly non-negative:

PJ (S4 )=�log
PJ (|)
PJ (%|)�NESS

�0 (2.2)

with equality only if the pathspace action AJ is time-reversal invariant.

2.2. Definition

The above discussion and definition (2.1) have remained mathemati-
cally naive and physically vague. The main mathematical question is here
to develop a sufficiently general theory of space-time Gibbs measures. For
simplicity however, we merely repeat here the definition of entropy produc-
tion for a Markov process with a finite state space. For more complicated
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models the story is very similar. Let X be a finite set, the phase space, and
let K be a finite set for the values of parameters. For every parameter value
a # K there is a stationary Markov process xt , t # R, with positive transition
rates pa(x, y) for jumps x � y and a stationary density \a on X. We
are given time-reversal transformations ?X on X and ?K on K, i.e., an
involution leaving invariant the counting measure. For a trajectory |=
(x1 , x2 ,..., xn) in X and a value a # K for the parameters, the entropy
production corresponding to the time-reversal ? is

S4 a(|)=ln
pa(x1 , x2) } } } pa(xn&1 , xn)
p~ a(xn , xn&1) } } } p~ a(x2 , x1)

where p~ a(u, v)= p?K (a)(?X (u), ?X (v)). The mean entropy production
(MEP) in the stationary state \a is the expectation value of S4 a(|) in the
Markov process. It equals

MEP?(\a)= :
x, y # X

\a(x) pa(x, y) ln
pa(x, y)
p~ a( y, x)

(2.3)

A more general set-up with various examples also of calculations in specific
models can be found in refs. 7 and 8; we just take (2.3) as our definition
in the present simplest case.

2.3. Positivity

For the mean entropy production we are interested in conditions
under which it is positive or when it is zero. For systems with a finite phase
space, we have the following easy proposition:

Proposition 2.1. The mean entropy production defined in (2.3)
satisfies

MEP?(\a)�0 (2.4)

with equality if and only if

pa(x, y) \a(x)= p~ a( y, x) \a( y), x, y # X (2.5)

The condition (2.5) is sometimes called generalized detailed balance.
It will reappear as the equality in (4.24).
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3. ENTROPY PRODUCTION FOR SPINFLIP PROCESSES

Spinflip dynamics are Markov (jump) processes for Ising spin con-
figurations _ on an infinite lattice whereby the elementary transitions are
spin flips _ � _i governed by (spinflip) rates c(i, _) at the sites i of the
lattice. For simplicity we take the d-dimensional cubic lattice Zd to the sites
of which we have assigned Ising spins _(i)=\1, i # Zd. The dynamics is
defined via rates c(i, _): they give the probability per unit time that the spin
at site i will flip when the current configuration is _. After flipping at lattice
site i the new configuration is denoted by _i. We make the standard
assumptions that the rates are translation invariant, finite range and
positive. This means that the process is spatially homogeneous, that the
spinflip rates c(i, _) only depend on the configuration _ restricted to a finite
neighborhood of the site i and that there exists a constant $>0 so that
c(i, _)�$. We refer to ref. 6 for a mathematically precise definition and for
more details.

To start we recall the notion of a potential for lattice spin systems.
A potential is a family of local functions VA on the spin configurations _
parametrized by the finite subsets A of Zd with

VA(_)=VA(_(i), i # A)

and such that

:
A % i

sup
_

|VA(_)|<+�, i # Zd (3.6)

We say that the spinflip dynamics is a stochastic Ising model for the poten-
tial (VA), or shorter, satisfies the condition of detailed balance, when

c(i, _)
c(i, _i )

=exp \& :
A % i

[VA(_i )&VA(_)]+ (3.7)

A standard example is the Glauber dynamics for the Ising model in which
case VA(_)=0 except when A=[i, j ] is a pair of nearest neighbor sites i, j
and then VA=&;J_(i) _( j) for some inverse temperature ; and coupling
coefficient J.

Suppose now that we have a translation-invariant stationary probabil-
ity distribution \ for our spinflip dynamics. Stationarity of a probability
measure \ is expressed by condition

| \(d_) :
i # Zd

c(i, _)[ f (_ i )& f (_)]=0 (3.8)
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for all local functions f on the spin configurations. From \ we can define
its local spinflip transform \i, i # Zd, via

| \(d_) f (_ i )=| \i (d_) f (_)

for all local functions f. We say that \i is absolutely continuous with
respect to \ if there exists an L1(d\)-function ri , � \(d_) |ri (_)|<+�, for
which

| \i (d_) f (_)=| \(d_) ri (d_) f (_),

for all local f. We say that \ is a Gibbs distribution for the potential (VA)
if

| \(d_) f (_ i )=| \(d_) f (_) exp \& :
A % i

[VA(_ i )&VA(_)]+ (3.9)

for all i # Zd and for all local functions f. In this case we have

ri (_)=
d\i

d\
(_)=exp \& :

A % i

[VA(_i )&VA(_)]+
In ref. 8 we obtained the following expression for the mean entropy

production (MEP) in the stationary state \:

MEP(\)=| \(d_) c(0, _) ln
c(0, _)
c(0, _0)

(3.10)

Here we used the standard time-reversal %(_t)=_&t , with ? the identity.
It is easy to see that when the spinflip dynamics satisfies detailed balance,
as in (3.7), then MEP(\)=0 for all translation invariant stationary dis-
tributions \.

Proposition 3.1. Suppose that the spinflip rates satisfy (3.7) for
some potential (VA) and that \ is a translation invariant stationary dis-
tribution as in (3.8). Then,

MEP(\)=0.

Proof. Using translation invariance, we can substitute (3.7) in (3.10)
to obtain that

MEP(\)=&
1

|4|
:

i # 4
| \(d_) c(i, _) :

A % i

[VA(_ i )&VA(_)]
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for all finite A/Zd. We now split the sum over A % i in two parts: A/4
and A & 4c{<. For the first part we get

&
1

|4|
:

i # 4
| \(d_) c(i, _)[H4(_i )&H4(_)]

with H4(_)=�A/4 VA(_) only depending on the spin configuration _ in
4. Therefore, and by the stationarity (3.8) of \, this first part is equal to

1
|4| | \(d_) :

i # 4c

c(i, _)[H4(_ i )&H4(_)]=0

For the second part we get

&
1

|4|
:

i # 4
| \(d_) c(i, _) :

4 % i, A & 4c{<

[VA(_i )&VA(_)]

But since the potential (VA) is by definition uniformly and absolutely sum-
mable by (3.6), it easily follows that this second part goes to zero as 4 A Zd

along a sequence of cubes. K

Remark. When the potential VA satisfies

:
A % 0

|A| sup
_

|VA(_)|<� (3.11)

Proposition 3.1 can also be obtained as an application of Corollary 4.2 in
ref. 4.

We see from the previous Proposition that the condition of detailed
balance (3.7) implies that the MEP is zero for all translation invariant
stationary states. We are now going to show a sort of inverse: if there is a
``nice'' stationary distribution \ such that MEP(\)=0, then the spinflip
dynamics satisfies detailed balance. In particular, \ is then necessarily a
reversible Gibbs measure!

Proposition 3.2. Suppose sup_ c(0, _)=M<�. Suppose \ is a
translation invariant probability measure such that d\0�d\ exists and is
bounded from below:

d\0

d\
�c>0 (3.12)
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Then we have MEP(\)=0 iff c� (0, _)=c(0, _), \-a.s., where

c� (0, _)=
d\0

d\
(_) c(0, _0) (3.13)

Proof. Let F4 denote the _-field generated by _(x), x # 4. Denote by
\4 , resp., \0

4 the restriction of \, resp., \0 to the _-field F4 . We obviously
have

d\0
4

d\4
=E _d\0

d\ } F4& (3.14)

Since d\0�d\ # L1(d\) we conclude from the martingale convergence
theorem that

lim
4 A Zd

d\0
4

d\4
=

d\0

d\
(3.15)

in L1(d\). Denote by &4 the Bernoulli measure with &(_(0)=+1)=1�2,
restricted to F4 . Then, by stationarity of \ we have, with f4=d\4 �d&4 ,

0= :
i # 4

| \(d_) c(i, _)[ln f4(_ i )&ln f4(_)]

= :
i # 4

| \(d_) c(i, _) ln
d\ i

4

d\4
(_)

= :
i # 4

| \(d_) c(i, _) ln
d\ i

d\

+ :
i # 4

| \(d_) c(i, _) _ln
d\ i

4

d\4
(_)&ln

d\ i

d\
(_)&

=|4| | \(d_) c(0, _) ln
d\0

d\
(_)

+ :
i # 4

| \(d_) c(i, _) F i
4(_) (3.16)

Here we abbreviated

F i
4(_)=\ln

d\ i
4

d\4
&ln

d\i

d\+ (3.17)
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and used the translation invariance of \ in the last step. From (3.16) we
obtain:

} | \(d_) c(0, _) ln
d\0

d\
(_) }� 1

|4|
:

i # 4 } | \(d_) c(i, _) F i
4(_) }

�M
1

|4|
:

i # 4
| d\ |F 0

4&i | (3.18)

where in the last step we used translation invariance of \ once again. Now
from the elementary inequality |ln a&ln b|�|(a&b)|�a 7 b we can deduce
the following: if fn converges to f in L1(d\) and if fn , f are bounded from
below by some constant c>0, then ln fn converges to ln f in L1(d\). This
fact implies that for given =>0, we can choose 2/Zd such that for all
2$#2

| d\ |F 0
2$ |�

=
2M

(3.19)

Next we can choose 4/Zd such that

|[i : 2+i/3 4] |
|4|

�
=

2M sup4 &F 0
4 &L1(d\)

(3.20)

and we obtain from (3.18):

} | \(d_) c(0, _) ln
d\0

d\
(_) }

�
1

|4|
:

i # 4, 2+i/4

=
2

+
|[i : 2+i/% 4]|

|4|
sup

4
&F 0

4&L1(d\) �= (3.21)

Now start from the expression (3.10) for the entropy production. A simple
computation shows that

MEP(\)=
1
2 | \(d_)(c(0, _)&c� (0, _)) ln

c(0, _)
c� (0, _)

+| \(d_) c(0, _) ln
d\0

d\
(_)

(3.22)

But (3.21) shows that the second term in (3.22) is equal to zero, and the
first term is zero if and only if c(0, 4)=c� (0, _) \-a.s. K
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4. ENTROPY PRODUCTION AND INFORMATION

We restrict ourselves again to a simple example. Suppose that X is a
finite set and consider a Markov process on X_[&1, +1] with transition
rates pa(x, y) for the change (x, a) � ( y, a) and transition rates qx(a, b)=1
for the change (x, a) � (x, b). No other transitions are allowed. We thus
have the Master Equation

�Pt(x, a)
�t

= :
y # X

[ pa( y, x) Pt( y, a)& pa(x, y) Pt(x, a)]

+ :
b=\1

[Pt(x, b)&Pt(x, a)] (4.23)

for a probability distribution Pt on X_[&1, +1]. Assuming that pa is
double stochastic:

:
y

pa(x, y)=1=:
y

pa( y, x), for x # X, a=\1

the distribution \ defined by \(x, a)=1�(2 |X | ), x # X, a=\1 is stationary
for the Markov process (4.23).

Assume furthermore that

pa(x, y)= p&a( y, x){ pa( y, x) (4.24)

We now define two mean entropy productions that differ only by the
choice of time-reversal transformation. For the first choice we define

%(xt , at)=(x&t , a&t)

and the corresponding mean entropy production is

MEP(\)=
1

2 |X |
:

x, y # X

|[ p&1(x, y)& p+1(x, y)] ln
p&1(x, y)
p+1(x, y)

which is clearly strictly positive as a consequence of the assumption
p&a(x, y){ pa(x, y) in (4.24). For the second choice, we define the involu-
tion ?(x, a)=(x, &a) on X_[&1, +1] and the corresponding time-rever-
sal

%$(xt , at)=(x&t , &a&t)=% b ?(xt , at)
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In that case, by (4.24), the corresponding mean entropy production MEP?

is easily found to be zero! As an obvious conclusion: the mean entropy
production in a stationary state depends on the choice of time-reversal
transformation used to define it. More physically relevant however is that
this example reminds us of the significant difference between entropy and
functions directly defined on the microscopic phase space. In contrast to
e.g., the energy, which is obtained by evaluating the microscopic phase
point, a definition of entropy should start by specifying the macroscopic or
thermodynamic variables which determine the macroscopic state. In other
words, what are the control parameters and what variables are considered
part of the dynamics. In the previous example, we can think of particles
performing a random walk (on the set X ) with a local bias defined in terms
of a spin variable a=\1. In the first definition of the entropy production
above, this bias is considered as an external field that breaks detailed
balance. In the second definition however, this field appears as another
dynamical variable which, under time-reversal, must be reflected. In this
case microscopic reversibility is restored (the field has become part of
the��now��equilibrium dynamics) and the mean entropy production is
zero.

Other, physically more realistic, examples of this same phenomenon
can easily be given. In this way, one can argue, positivity of entropy
production cannot be reduced to a dynamical property alone (as is done
in refs. 9 and 10). Just as for the equilibrium entropy: its definition and its
increase for isolated systems depends (also) on the choice of variables
reflecting the observational set-up. More generally, one would say that
questions on the positivity of transport coefficients cannot be answered
without specifying experimental conditions and control; referring to
microscopic chaos or ergodic-theoretic considerations can never provide a
complete explanation. Remark nevertheless that the traditional definition of
transport coefficients (as used within linear response theory) relies on a
good space-time decay of current correlations which is both a static and a
dynamic issue.
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